Free Products of Higher Operad Algebras

نویسندگان

  • Mark Weber
  • MARK WEBER
چکیده

One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product of 2-categories. In this paper we continue the developments of [3] and [2] by understanding the natural generalisations of Gray’s little brother, the funny tensor product of categories. In fact we exhibit for any higher categorical structure definable by an n-operad in the sense of Batanin [1], an analogous tensor product which forms a symmetric monoidal closed structure on the category of algebras of the operad.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Unit Actions on Operads and Hopf Algebras

Abstract. Coherent unit actions on a binary, quadratic operad were introduced by Loday and were shown by him to give Hopf algebra structures on the free algebras when the operad is also regular with a splitting of associativity. Working with such operads, we characterize coherent unit actions in terms of linear equations of the generators of the operads. We then use these equations to give all ...

متن کامل

$omega$-Operads of coendomorphisms and fractal $omega$-operads for higher structures

     In this article we introduce the notion of textit{Fractal $omega$-operad} emerging from  a natural $omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $omeg...

متن کامل

Compatible associative products and trees

We compute dimensions and characters of the components of the operad of two compatible associative products, and give an explicit combinatorial construction of the corresponding free algebras in terms of planar rooted trees.

متن کامل

Derived bracket construction and Manin products

We will extend the classical derived bracket construction to any algebra over a binary quadratic operad. We will show that the derived product construction is a functor given by the Manin white product with the operad of permutation algebras. As an application, we will show that the operad of prePoisson algebras is isomorphic to Manin black product of the Poisson operad with the preLie operad. ...

متن کامل

Homotopy Inner Products for Cyclic Operads

We introduce the notion of homotopy inner products for any cyclic quadratic Koszul operad O, generalizing the construction already known for the associative operad. This is done by defining a colored operad b O, which describes modules over O with invariant inner products. We show that b O satisfies Koszulness and identify algebras over a resolution of b O in terms of derivations and module map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009